目录

动态分区分配算法


目录
  • 首次适应算法FF
  • 循环首次适应算法NF
  • 最佳适应算法BF
  • 最差适应算法WF
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

#define PROCESS_NAME_LEN 32   //进程名字长度
#define MIN_SLICE 10          //最小碎片大小
#define DEFAULT_MEM_SIZE 1024 // 默认的内存大小
#define DEFAULT_MEM_START 0   //起始地址

#define MA_FF 1 //首次适应算法
#define MA_BF 2 //最佳适应算法
#define MA_WF 3 //最坏适应算法
#define MA_NF 4 //临近适应算法(循环首次适应算法)

//空闲分区的结构体
typedef struct free_block_type {
    int size;
    int start_addr;
    struct free_block_type *next;
} free_block_type;
/*指向内存中空闲块链表的首指针*/
free_block_type *free_block;

//已分配分区的结构体
typedef struct allocated_block {
    int pid;
    int size;
    int start_addr;
    char process_name[PROCESS_NAME_LEN];
    struct allocated_block *next;
} allocated_block;
//进程分配内存块链表的首指针
struct allocated_block *allocated_block_head = NULL;

int mem_size = DEFAULT_MEM_SIZE;    // 内存大小
int ma_algorithm = MA_FF;   // 动态分区分配算法
static int pid = 0;     //  进程号
int flag = 0;   // 判断内存是否被修改标志

//函数声明
void display_menu();    // 显示主菜单
int set_mem_size();     // 设置内存大小
void set_algorithm();   // 选择当前算法
void rearrange(int algorithm);  // 为每一个进程分配完内存以后重新按已选择的算法再次排序
int new_process();      // 创建一个新的进程
int allocate_mem(struct allocated_block *ab);   // 内存分配
void kill_process();    // 杀死进程
int free_mem(struct allocated_block *ab);       // 释放杀死进程的内存块
int dispose(struct allocated_block *free_ab);   // 销毁杀死进程的结点
int display_mem_usage();    // 显示内存使用情况
allocated_block *find_process(int pid);         // 找到要杀死的进程的标号
void rearrange_FF();    // 首次适应算法
void rearrange_BF();    // 最佳适应算法
void rearrange_WF();    // 最坏适应算法
void rearrange_NF();    // 临近适应算法(循环首次适应算法)

//初始化空闲分区
free_block_type *init_free_block(int mem_size) {
    free_block_type *fb;
    fb = (free_block_type *)malloc(sizeof(free_block_type));
    if (fb == NULL) {
        printf("No mem\n");
        return NULL;
    }
    fb->size = mem_size;
    fb->start_addr = DEFAULT_MEM_START;
    fb->next = NULL;
    return fb;
}

//显示主菜单
void display_menu() {
    printf("\n");
    printf("1 - Set memory size (default=%d)\n", DEFAULT_MEM_SIZE);
    printf("2 - Select memory allocation algorithm\n");
    printf("3 - New process \n");
    printf("4 - Terminate a process \n");
    printf("5 - Display memory usage \n");
    printf("0 - Exit\n");
}

/*设置内存大小*/
int set_mem_size() {
    int size;
    if (flag != 0) { /*flag标志防止内存被再次设置*/
        printf("Cannot set memory size again\n");
        return 0;
    }
    printf("Total memory size =");
    scanf("%d", &size);
    if (size > 0) {
        mem_size = size;
        free_block->size = mem_size; /*设置初始大小为 1024*/
    }
    flag = 1;
    return 1;
}
/*选择当前算法*/
void set_algorithm() {
    int algorithm;
    printf("\t1 - First Fit\n");
    printf("\t2 - Best Fit \n");
    printf("\t3 - Worst Fit \n");
    printf("\t4 - Next Fit\n");
    printf("Please input your choice : ");
    scanf("%d", &algorithm);
    if (algorithm >= 1 && algorithm <= 4)
        ma_algorithm = algorithm;

    rearrange(ma_algorithm);
}

/*为每一个进程分配完内存以后重新按已选择的算法再次排序*/
void rearrange(int algorithm) {
    switch (algorithm) {
    case MA_FF:
        rearrange_FF();
        break;
    case MA_BF:
        rearrange_BF();
        break;
    case MA_WF:
        rearrange_WF();
        break;
    case MA_NF:
        rearrange_NF();
        break;
    }
}

/*首次适应算法,按地址的大小由小到大排序*/
void rearrange_FF() {
    free_block_type *temp, *p = NULL;
    free_block_type *head = NULL;
    int current_min_addr;

    if (free_block) {
        temp = free_block;
        current_min_addr = free_block->start_addr;
        while (temp->next != NULL) {
            if (temp->next->start_addr < current_min_addr) {
                current_min_addr = temp->next->start_addr;
                p = temp;
            }
            temp = temp->next;
        }
        if (p != NULL) {
            temp = p->next;
            p->next = p->next->next;
            temp->next = free_block;
            free_block = temp;
        }
        head = free_block;
        p = head;
        temp = head->next;
        while (head->next != NULL) {
            current_min_addr = head->next->start_addr;
            while (temp->next != NULL) {
                if (temp->next->start_addr < current_min_addr) {
                    current_min_addr = temp->next->start_addr;
                    p = temp;
                }
                temp = temp->next;
            }
            if (p->next != head->next) {
                temp = p->next;
                p->next = p->next->next;
                temp->next = head->next;
                head->next = temp;
            }
            head = head->next;
            temp = head->next;
            p = head;
        }
    }
    return;
}

/*最佳适应算法,按内存块的大小由小到大排序*/
void rearrange_BF() {
    free_block_type *temp, *p = NULL;
    free_block_type *head = NULL;
    int current_min_size = free_block->size;

    temp = free_block;
    while (temp->next != NULL) {
        if (temp->next->size < current_min_size) {
            current_min_size = temp->next->size;
            p = temp;
        }
        temp = temp->next;
    }
    if (p != NULL) {
        temp = p->next;
        p->next = p->next->next;
        temp->next = free_block;
        free_block = temp;
    }
    head = free_block;
    p = head;
    temp = head->next;
    while (head->next != NULL) {
        current_min_size = head->next->size;
        while (temp->next != NULL) {
            if (temp->next->size < current_min_size) {
                current_min_size = temp->next->size;
                p = temp;
            }
            temp = temp->next;
        }
        if (p->next != head->next) {
            temp = p;
            p->next = p->next->next;
            temp->next = head->next;
            head->next = temp;
        }
        head = head->next;
        temp = head->next;
        p = head;
    }
}

/*最坏适应算法,按地址块的大小从大到小排序*/
void rearrange_WF() {
    free_block_type *temp, *p = NULL;
    free_block_type *head = NULL;
    int current_max_size = free_block->size;
    temp = free_block;
    while (temp->next != NULL) {
        if (temp->next->size > current_max_size) {
            current_max_size = temp->next->size;
            p = temp;
        }
        temp = temp->next;
    }
    if (p != NULL) {
        temp = p;
        p->next = p->next->next;
        temp->next = free_block;
        free_block = temp;
    }
    head = free_block;
    p = head;
    temp = head->next;
    while (head->next != NULL) {
        current_max_size = head->next->size;
        while (temp->next != NULL) {
            if (temp->next->size > current_max_size) {
                current_max_size = temp->next->size;
                p = temp;
            }
            temp = temp->next;
        }
        if (p->next != head->next) {
            temp = p->next;
            p->next = p->next->next;
            temp->next = head->next;
            head->next = temp;
        }
        head = head->next;
        temp = head->next;
        p = head;
    }
    return;
}

// 临近适应算法(循环首次适应算法)
struct free_block_type *NF_tmp = NULL;
void rearrange_NF(){
    free_block_type *temp, *p = NULL;
    free_block_type *head = NULL;
    int current_min_addr;

    if (free_block) {
        temp = free_block;
        current_min_addr = free_block->start_addr;
        // 找到最小的地址
        while (temp->next != NULL) {
            if (temp->next->start_addr < current_min_addr) {
                current_min_addr = temp->next->start_addr;
                p = temp;
            }
            temp = temp->next;
        } // 让最小的地址成为空闲内存链表头
        if (p != NULL) {
            temp = p->next;
            p->next = p->next->next;
            temp->next = free_block;
            free_block = temp;
        }
        head = free_block;
        p = head;
        temp = head->next;
        while (head->next != NULL) {    // 从头开始向后遍历,把最小的地址的内存逐次接起来
            current_min_addr = head->next->start_addr;
            while (temp->next != NULL) {    // 找到剩余最小的地址的内存
                if (temp->next->start_addr < current_min_addr) {
                    current_min_addr = temp->next->start_addr;
                    p = temp;
                }
                temp = temp->next;
            }
            if (p->next != head->next) {    // 把找到的最小的接起来
                temp = p->next;
                p->next = p->next->next;
                temp->next = head->next;
                head->next = temp;      // 接上新的较小的头
            } 
            head = head->next;  // 继续向后遍历
            temp = head->next;
            p = head;
        }
    }
    return;
}


//创建一个新的进程
int new_process() {
    struct allocated_block *ab;
    int size;
    int ret;
    ab = (struct allocated_block *)malloc(sizeof(struct allocated_block));
    if (!ab)
        exit(-5);
    ab->next = NULL;
    pid++;
    sprintf(ab->process_name, "PROCESS-%02d", pid);
    ab->pid = pid;
    printf("Memory for %s:", ab->process_name);
    printf("Please input you want to allocate process' size : ");
    scanf("%d", &size);
    if (size > 0) {

        ab->size = size;
    }
    ret = allocate_mem(ab);
    if ((ret == 1) && (allocated_block_head == NULL)) {
        allocated_block_head = ab;
        return 1;
    }

    else if (ret == 1) {
        ab->next = allocated_block_head;
        allocated_block_head = ab;
        return 2;
    } else if (ret == -1) {
        printf("Allocation fail\n");
        pid--;
        free(ab);
        return -1;
    }
    return 3;
}

// NF专属内存分配
int allocate_mem_NF(struct allocated_block *ab, int ab_size) {
    struct free_block_type *fbt, *pre, *temp, *work, *F = NULL;
    int request_size = ab_size;
    // 与上一次位置有关
    if (NF_tmp == free_block || NF_tmp == NULL) { // 从头或者首次分配
        F = NULL;
        NF_tmp = free_block;
    } else
        F = NF_tmp;     // F记录保存上次位置,作为循环判断条件
    fbt = NF_tmp;
    pre = fbt;
    do {
        if (F != NULL && fbt == NULL)
            fbt = free_block;
        if (fbt->size >= request_size) {
            NF_tmp = fbt;
            if (fbt->size - request_size >= MIN_SLICE) {    /*分配后空闲空间足够大,则分割*/
                // mem_size -= request_size;
                fbt->size -= request_size;
                ab->start_addr = fbt->start_addr;
                fbt->start_addr += request_size;
                NF_tmp = fbt;   // 重新记录分配位置
            } else if ((fbt->size - request_size) < MIN_SLICE) {                /*分割后空闲区成为小碎片,一起分配*/
                // mem_size -= fbt->size;
                if (pre == free_block)
                    free_block = fbt->next;
                else if (pre == fbt)
                    for (pre = free_block; pre->next != NULL; pre = pre->next)
                        if (pre->next == fbt)
                            break;
                pre->next = fbt->next;
                NF_tmp = fbt->next;     // 重新记录分配位置
                ab->start_addr = fbt->start_addr;
                ab->size = fbt->size;
                free(fbt);
            } else {
                temp = free_block;
                while (temp != NULL) {
                    work = temp->next;

                    if (work != NULL) {     /*如果当前空闲区与后面的空闲区相连,则合并*/
                        if (temp->start_addr + temp->size == work->start_addr) {
                            temp->size += work->size;
                            temp->next = work->next;
                            if (NF_tmp == work)
                                NF_tmp = temp;
                            free(work);
                            continue;
                        }
                    }

                    temp = temp->next;
                }
                rearrange(ma_algorithm); /*重新按当前的算法排列空闲区*/
            }
            return 1;
        }
        pre = fbt;
        fbt = fbt->next;
    } while (fbt != F);     // 判断fbt是否循环完一圈
    return -1;
}

//内存分配
int allocate_mem(struct allocated_block *ab) {
    if(ma_algorithm == MA_NF) {
        return allocate_mem_NF(ab, ab->size);
    }
    free_block_type *fbt, *pre;
    free_block_type *temp, *p, *p1;
    allocated_block *q;
    int request_size = ab->size;
    int sum = 0;
    int max;
    fbt = pre = free_block;
    // 若有空闲内存
    if (fbt) {
        if (ma_algorithm == MA_WF) {
            // 若是最坏适应算法且最大的空闲内存也不够
            if (fbt == NULL || fbt->size < request_size)
                return -1;
        } else {    // 若不是WF则是由小到大排列,遍历空闲内存寻找需要的大小
            while (fbt != NULL && fbt->size < request_size) {
                pre = fbt;
                fbt = fbt->next;
            }
        } // 遍历完仍旧找不到
        if (fbt == NULL || fbt->size < request_size) {
            if (free_block->next != NULL) {     // 将剩余内存空间相加看是否足够
                sum = free_block->size;
                temp = free_block->next;
                while (temp != NULL) {
                    sum += temp->size;
                    if (sum >= request_size)
                        break;
                    temp = temp->next;
                }
                if (temp == NULL) // 还不够,退出
                    return -1;
                else {  // 足够
                    pre = free_block;
                    max = free_block->start_addr;
                    fbt = free_block;
                    while (temp->next != pre) {     // 找到这些块的最大地址
                        if (max < pre->start_addr) {
                            max = pre->start_addr;
                            fbt = pre;
                        }
                        pre = pre->next;
                    }
                    pre = free_block;

                    while (pre != temp->next) {
                        q = allocated_block_head;
                        p = free_block;

                        while (q != NULL) {     // 向前推 
                            if (q->start_addr > pre->start_addr)
                                q->start_addr = q->start_addr - pre->size;
                            q = q->next;
                        }
                        while (p != NULL) {
                            if (p->start_addr > pre->start_addr)
                                p->start_addr = p->start_addr - pre->size;
                            p = p->next;
                        }

                        pre = pre->next;
                    }

                    pre = free_block;
                    while (pre != temp->next) {

                        p1 = pre->next;
                        if (pre == fbt)     // 最大块
                            break;
                        free(pre);
                        pre = p1;
                    }
                    q = allocated_block_head;
                    free_block = fbt;
                    free_block->start_addr = q->start_addr + q->size;

                    free_block->size = sum;
                    free_block->next = temp->next;
                    if (free_block->size - request_size < MIN_SLICE) {  // 分割后太小就一起分割 
                        ab->size = free_block->size;
                        ab->start_addr = free_block->start_addr;
                        pre = free_block;
                        free_block = free_block->next;
                        free(pre);
                    } else {    // 分割内存
                        ab->start_addr = free_block->start_addr;
                        free_block->start_addr =
                            free_block->start_addr + request_size;
                        free_block->size = free_block->size - request_size;
                    }
                }
            } else   // 剩余空间相加仍旧不够
                return -1;
        } else {    // 遍历空闲内存找到了足够大的
            if (fbt->size - request_size < MIN_SLICE) {     // 分割后太小就一起分割 
                ab->size = fbt->size;
                ab->start_addr = fbt->start_addr;
                if (pre->next == free_block) {
                    free_block = fbt->next;
                } else {
                    pre->next = fbt->next;
                }
                free_block = fbt->next;
                free(fbt);
            } else {    // 分割内存
                ab->start_addr = fbt->start_addr;
                fbt->start_addr = fbt->start_addr + request_size;
                fbt->size = fbt->size - request_size;
            }
        }
        rearrange(ma_algorithm);
        return 1;
    } else {    // 无空闲内存
        printf("Free Memory already has been allocated over: ");
        return -1;
    }
}

//选择杀死一个进程
void kill_process() {
    struct allocated_block *ab;
    int pid;
    printf("Kill Process, pid=");
    scanf("%d", &pid);
    ab = find_process(pid);
    if (ab != NULL) {
        free_mem(ab);
        dispose(ab);
    }
}

//找到要杀死的进程的标号
allocated_block *find_process(int pid) {
    allocated_block *abb;
    abb = allocated_block_head;
    if (abb->pid == pid) {
        return abb;
    }
    abb = allocated_block_head->next;
    while (abb->next != NULL) {
        if (abb->pid == pid)
            return abb;
        abb = abb->next;
    }
    return abb;
}

//释放杀死进程的内存块
int free_mem(struct allocated_block *ab) {
    int algorithm = ma_algorithm;
    struct free_block_type *fbt, *pre;
    fbt = (struct free_block_type *)malloc(sizeof(struct free_block_type));
    pre = (struct free_block_type *)malloc(sizeof(struct free_block_type));
    if (!fbt)
        return -1;

    fbt->start_addr = ab->start_addr;
    fbt->size = ab->size;
    fbt->next = free_block;
    free_block = fbt;
    rearrange_FF();
    pre->next = free_block;
    pre->size = 0;
    while (pre->next && (pre->next->start_addr != fbt->start_addr))
        pre = pre->next;
    if (pre->size != 0 && fbt->next != NULL) {
        if (((pre->start_addr + pre->size) == fbt->start_addr) &&
            ((fbt->start_addr + fbt->size) == fbt->next->start_addr)) {
            pre->size = pre->size + fbt->size + fbt->next->size;
            pre->next = fbt->next->next;
            free(fbt->next);
            free(fbt);
        } else if ((pre->start_addr + pre->size) == fbt->start_addr) {
            pre->size = pre->size + fbt->size;
            pre->next = fbt->next;
            free(fbt);
        } else if (fbt->start_addr + fbt->size == fbt->next->start_addr) {
            fbt->size = fbt->size + fbt->next->size;
            fbt->next = fbt->next->next;
            free(fbt->next);
        }
    } else if ((pre->size == 0) && fbt->next) {
        if ((fbt->start_addr + fbt->size) == fbt->next->start_addr) {
            fbt->size = fbt->size + fbt->next->size;
            fbt->next = fbt->next->next;
            free_block = fbt;
            free(fbt->next);
        }
    } else if (fbt->next == NULL) {
        if ((pre->start_addr + pre->size) == fbt->start_addr) {
            pre->size = pre->size + fbt->size;
            pre->next = fbt->next;
            free(fbt);
        }
    }
    rearrange(algorithm);

    return 1;
}

//销毁杀死进程的结点
int dispose(struct allocated_block *free_ab) {
    struct allocated_block *pre, *ab;

    if (free_ab == allocated_block_head) {
        allocated_block_head = allocated_block_head->next;
        free(free_ab);
        return 1;
    }
    pre = allocated_block_head;
    ab = allocated_block_head->next;
    while (ab != free_ab) {
        pre = ab;
        ab = ab->next;
    }
    pre->next = ab->next;
    free(ab);
    return 2;
}

//显示内存使用情况
int display_mem_usage() {
    struct free_block_type *fbt = free_block;
    struct allocated_block *ab = allocated_block_head;
    printf("----------------------------------------------------------\n");

    if (fbt == NULL) {
        printf("Free Memory already used over !\n");
    }
    printf("----------------------------------------------------------\n");

    if (fbt) {
        printf("Free Memory:\n");
        printf("%20s %20s\n", " start_addr", " size");
        while (fbt != NULL) {
            printf("%20d %20d\n", fbt->start_addr, fbt->size);
            fbt = fbt->next;
        }
    }

    printf("\nUsed Memory:\n");
    printf("%10s %20s %15s %10s\n", "PID", "ProcessName", "start_addr",
           " size");
    while (ab != NULL) {
        printf("%10d %20s %15d %10d\n", ab->pid, ab->process_name,
               ab->start_addr, ab->size);
        ab = ab->next;
    }
    printf("----------------------------------------------------------\n");
    return 0;
}

//退出,销毁所有链表
void do_exit() {
    free_block_type *temp;
    allocated_block *temp1;

    temp = free_block->next;
    while (temp != NULL) {
        free_block->next = temp->next;
        free(temp);
        temp = free_block->next;
    }
    free(free_block);

    if(!allocated_block_head)
        return;
    temp1 = allocated_block_head->next;
    while (temp1 != NULL) {
        allocated_block_head->next = temp1->next;
        free(temp1);
        temp1 = allocated_block_head->next;
    }
    free(allocated_block_head->next);
}
//主函数
int main() {
    char choice;
    pid = 0;
    free_block = init_free_block(mem_size);
    while (1) {
        display_menu();
        fflush(stdin);

        choice = getchar();
        switch (choice) {
        case '1':
            set_mem_size();
            break;
        case '2':
            set_algorithm();
            flag = 1;
            break;
        case '3':
            new_process();
            flag = 1;
            break;
        case '4':
            kill_process();
            flag = 1;
            break;
        case '5':
            display_mem_usage();
            flag = 1;
            break;
        case '0':
            do_exit();
            exit(0);
        default:
            break;
        }
    }
    return 0;
}